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Abstradt. Hierarchical convolutional neural networks are a well-known robust
image-recognition model. In order to apply this model to robot vision or various
intelligent vision systems its VLS| implementation with high performance and
low power consumption isrequired. This paper proposesa convolutional network
VLSI architecture using a hybrid approach composed of pulse-width modulation
(PWM) and digital circuits. We call this approach merged/mixed anal og-digital
architecture. The VLS| includes PWM neuron circuits, PWM/digital converters,
digital adder-subtracters, and digital memory. We have designed and fabricated a
VLSI chip by usinga0.35 um CMOS process The VL SI chip can perform 6-bit
precision convolution calculationsfor an image of 100x 100 pixels with arecep-
tive field area of up to 20x 20 pixels within 5 ms, which means a performance of
2 GOPS. Power consumption of PWM neuron circuits is estimated to be 20 mW.
We have verified successful operationsusing afabricated VLSI chip.

1 Introduction

For object detection or recognition from natural images, processing models for extract-
ing image features should tol erate pattern deformations and pattern position shifts. Con-
volutional neural networks with ahierarchical structure, which imitate the vision nerve
system in the brain, have such functions [1-3].

The operations required for implementing convolutional networks are multiplica-
tion by weights and nonlinear conversion, as usua neural network models. Because
they require huge computational power, to execute these operations in real-time and
with low power consumption for intelligent applications such as robot vision, efficient
VLSl implementation is required. Various neural network VLSIs have actively been



developed, and an analog VLS| processor suitable for convolutional networkswas aso
reported [4].

On the other hand, we have aready proposed a new circuit architecture, which is
based on a pulse-width modulation (PWM) approach merging analog and digital ap-
proaches [5]. This architecture has various advantages of both approaches, especialy it
achieves low power consumption, and it is suitable for implementing neural networks.

In this paper, by combining this merged analog-digital architecture with the digital
approach, we propose a convolutional network VLS| architecture that consists of PWM
neuron circuits and digital memory. We also present the measurement resultsof aVLSI
chip fabricated using a2 0.35 gm CMOS process.

2 Hierarchical Convolutional Network M odel

Figure 1 shows the principle of pattern detection using a convolutional network. The
first layer of the hierarchical structure only receives images. The following layers con-
sist of two sub-layers: a feature detection (FD) layer and a feature pooling (FP) layer.
Each layer includes some feature classes, each of which has neurons that react the same
image feature. The neurons are arranged in a 2-D array to maintain the feature position
of the input image. Therefore, the feature class pixel size is equa to the input image
pixel size, and each neuron corresponds to each pixel. All neurons are connected to
the neurons in a predefined area near the same position of the previous layer, which is
called areceptive field. The FP neurons are used to achieve recognition tolerant to pat-
tern deformation and position shifts. The FD neurons operate for integrating a feature.
By the hierarchically repetitive structure, local simple features (e.g., line segments) of
the input image are gradually assembled into complex features.

Operations between layers are considered as a convol ution because all neurons be-
longing to a feature class have a receptive field with the same weight distribution. The
receptive field of the FP neuron is on the same feature class of the previous FD layer.
All neurons of the FP layer have the same positive weight distribution, in which the
weight is largest in the center of the receptive field and it decreases as the position is
apart from the center. The shifts of feature positions in the FD layers are tolerated in
the FP layers by thisweight distribution. On the other hand, the receptive fields of the
FD neurons are on al feature classes of the previous FP layer. The weights of the FD
neurons are obtained by training.

3 Convolutional Network VLS| Architecture

We propose a VLSI architecture that implements the hierarchical convolutional net-
works. Because the number of processing circuitsintegrated in a chip isrestricted, it is
difficult torealize all connectionsof the hierarchical network by real processing circuits.
Therefore, in our architecture, neuron circuits are repetitively used by time-sharing op-
eration.

Time-sharing operation in the convolutional network isshownin Fig. 2. The feature
classsizeand thereceptivefield sizeareassumed N x N and m x m pixels, respectively.
The outputs of N neurons belonging to one column of a feature class are inputted to
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Fig. 1. Principle of pattern recognition using a convolutional network (an example of letter recog-
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SelectedJ’cd umn

Receptive field Synapse
X N-m+1
y m X m| £
Receptivefield[™ N ggnals > €
27 Nl
4

Previouslayer (1 feature class)

(N N neurons) Neuron circuits

Fig. 2. Time-sharing operation in the convolutional network

(N — m + 1) neuron circuits simultaneously. The neuron operations for one column
of the receptive fields are performed in parallel. For m rows in a receptive fields, the
above neuron operations are repeated by m times, and furthermore each of them is
repeated twice for positive and negative weighting. Thus, the number of repetitions in
(N — m + 1)-parallel neuron operations for convolution between feature classes is
(N—=m+1) xmx 2.

The block diagram of our convolutional network circuit isshownFig. 3. By utilizing
the advantage of small circuit size in the PWM approach, m-input PWM neuron circuits
are integrated. To achieve time-sharing operation, the partial accumulation results of
neuron operation are temporarily held in the neuron circuit. These partial results are
accumulated and stored in an SRAM through the PWM/digital converter (WDC) and
the digital adder-subtracter (DAS). The WDC converts PWM signals output from a
neuron circuit into digital signals. The DAS is used in time-sharing operations for one
column of the receptive field and for the positive and negative weighting.
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Fig. 3. Block diagram of our convolutional network circuit. The componentsin the shaded region
areincluded in our VLSI chip

Although we assumed that the number of inputs of the neuron circuitsis m x m,
convolution with a smaller receptive field size can be calculated by setting the extra
inputs at zero. Convolution with a larger receptive field size can aso be calculated by
time-sharing operation.

4 PWM Neuron Circuit

4.1 Connection Model
In the general feedforward networks, internal state «; and output o; of postsynaptic
neuron ¢ are given by the following equations, respectively;

U; = ZwijOj s (1)
J
0i = flui) )

where w;; is the connection weight from presynaptic neuron j to postsynaptic neuron
i, and f isthe nonlinear conversion function.

In the conventional model, the synapse part multiplies o; by w;; and the neuron
(soma) part executes summation and nonlinear conversion f(u;). Fromegs. (1) and (2),
the output of postsynaptic neuron  is given by

o; = f(D_ wijo;) . (©)
J
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However, in our circuit model, both nonlinear conversion and multiplication are
performed by the synapse part, and the neuron part executes summation and outputs the
internal state, as shownin Fig. 4. Thus, from egs. (1) and (2), the internal state whichis
the output of neuron i is given by

ui =Y wiiflug) . (4)
J

Equations (3) and (4) are the equivalent operations in hierarchical networks.

4.2 Circuit Design

Our PWM neuron circuit is shown in Fig. 5. Its operation is as follows: (1) A PWM
signal P; that corresponds to the internal state of the presynaptic neuron is transmit-
ted to the synapse part; (2) the input PWM signals are converted with the nonlinear
function, and weighted summation is performed by converting the PWM signals into
charges stored in capacitor Cy; (3) the voltage between the nodes of the capacitor, Vi,
is converted into a PWM signal by comparing it with linearly-ramped voltage signal
Vref .

In thiscircuit, nonlinear conversion and multiplication are performed by two MOS-
FETs, M1 and M2, at the same time. The nonlinear function is applied to all synapses
by changing analog voltage V. The connection weighting is achieved by applying
analog DC voltage Vi . When Vi dlightly exceeds the threshold voltage of M1, both
MOSFETs M1 and M2 operate in the saturation region, and thus current /s flowing
to capacitor Cy mainly depends on V. When Vr becomes lower, M1 operates in the
triode region, and M2 still operates in the saturation region, thus current / ¢ mainly de-
pends on V. Thus, weighting and nonlinear conversion w;; - f(u; ) are achieved at the
synapse part.
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Fig. 5. PWM neuron circuit
5 Experimental Results Using a Fabricated VL SI Chip

We fabricated a convolutional network VLSI by using a 0.35 ym CMOS process. Fig-
ure 6 shows a micro-photograph of the fabricated chip. The VLS| chip includes 81
neuron circuits with 20 synaptic inputs, 81 PWM/digital converters, 81 digital adder-
subtracters, 39 kb SRAM, and 20 weight setting circuits. Therefore, this chip can im-
plement a convolutional network with N = 100 and m = 20. By using thisVLSI chip
with external feedback control, we can construct a hierarchical convolutional network.

We measured the PWM input-output relationship of neuron circuits when all of 20
PWM input signals per neuron are identical. The measurement results are shown in
Fig. 7 with the corresponding circuit simulation (HSPICE) results. The measurement
results agree well with the simulation results, and it is demonstrated that weighting and
nonlinear conversion are achieved simultaneously.

Since we defined the operation cycle time as 1.6 s, the whole convolution opera-
tion requires about 5 ms. This chip achieves an operation performance of 2 GOPS® by
parallel operationsfor 81(= N —m—+1) neuronsand 1620(= (N —m+1)m) synapses.
We have estimated a power consumption of PWM neuron circuitsto be 20 mw although
the digital circuit block consumes 190 mW.

We have verified that all circuit components operate successfully. The whole oper-
ation for a convolutional network has also been verified.

* The VLSI chip has been fabricated in the chip fabrication program of VLS| Design and Edu-
cation Center(VDEC), the University of Tokyo, Japan with the collaboration by Rohm Corpo-
ration and Toppan Printing Corporation.

® Giga Operations (multipli cations and summations) Per Second.
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Fig. 6. Chip micro-photograph

6 Conclusion

We proposed amerged/mixed anal og-digital VLSI architecture for convolutional neural
networks using PWM and digital circuit techniques.

A neuron circuit with 20 synapses was designed. Nonlinear conversion and multipli-

cations by connection weights are realized by two MOSFETS, thus a very small layout
area and low power consumption of the synapse part were achieved. Since the connec-
tions between layers have the same weight distribution, hierarchical networks can be
constructed by feedback and time-sharing operations using the convolutional network
VLS.

We designed and fabricated a convolutional network VLS| with an operation per-

formance of 2 GOPS, and verified successful operations of al circuit components.
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Fig. 7. PWM input-output relationship: (8) circuit simulation (HSPICE) results, and (b) measure-
ment results



