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Abstract – This paper describes a clustering algo-
rithm for vector quantizers using a “stochastic as-
sociation model”. It offers a simple, powerful and
efficient soft-max adaptation rule. The adaptation
process is the same as the on-line K-means cluster-
ing method except for adding random fluctuation in
the distortion error evaluation process. For hard-
ware implementation of this process, we propose a
nanostructure with 3D-nanodot arrays, whose opera-
tion is described by a single-electron circuit. It pos-
itively uses fluctuation in quantum mechanical tun-
neling processes.

1 Introduction

Vector quantization (VQ) techniques are used in a
wide range of applications, including speech and im-
age processing and data compression. VQ techniques
encode a data manifold V � ℜD by using only a fi-
nite set of reference vectors w� �w1� � �� �wN�. A data
vector v � V is represented by the best-matching or
“winning” reference vector wc.

Various clustering algorithms to obtain the best ref-
erence vectors which minimize the average distortion
error have been reported. Here, we treat on-line train-
ing, in which the data point distribution is not given a
priori, but instead a stochastic sequence of incoming
sample data points drives the adaptation procedure.

The straightforward approach is the well-known
on-line K-means clustering algorithm, in which only
the nearest reference vector to the sample vector is
adjusted;

∆wi � ε �δic � �v�t��wi�� (1)

where, ε is the step size and δi j is the Kronecker
delta. However, this simple clustering algorithm is

often stuck in a local minimum. To avoid this dif-
ficulty, a common approach is to introduce a “soft-
max” adaptation rule that not only adjusts the “win-
ning” reference vector but affects other reference
vectors depending on their proximity to v. The
well-known “soft-max” clustering algorithms are the
maximum-entropy (ME) algorithm [1], the Koho-
nen’s self-organization map (SOM) [2], and the
neural-gas (NG) algorithm [3].

In this paper, we propose a new efficient soft-max
adaptation algorithm [4]. It employs the stochastic
association model that we have proposed related to
single-electron circuits [5-7]. It is demonstrated from
simulation results that our clustering algorithm is as
powerful as the other algorithms. We also propose a
nanostructure based on a single-electron circuit for
implementing the stochastic association model [8-
11].

2 Stochastic association algorithm

A usual associative memory is defined as a system
that deterministically extracts the vector most simi-
lar to the input vector from the stored reference vec-
tors. This just corresponds to the process choosing
the winning reference vector for a certain data vector
in all conventional clustering algorithms.

In our stochastic association (SA) model, the asso-
ciation probability depends on the similarity between
the input and the reference vectors [5]. The SA al-
gorithm extracts not only the reference vector most
similar to the input but also other similar reference
vectors with the probability depending on the simi-
larity.

In the SA algorithm, stochastic fluctuation is added
in the evaluation process of distortion error D i be-
tween data vector v and reference vector wi. The
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Figure 1: Architecture for clustering processing using the SA
model.

distortion error Di can be the squared Euclidean dis-
tance �v�wi�

2 or the Manhattan distance �v�wi�.
The evaluation result is represented by

Ri � Di�ξ� (2)

where ξ is a random variable with probability distri-
bution function ϕ�ξ�. Therefore, the evaluation result
Ri is also considered as a random variable. The prob-
ability that Ri has value ri is represented by

Pr�Ri � ri�� ϕ�ri�Di�� (3)

The winning reference vector wc is determined by

c � arg min
i
�Ri�� (4)

If the winning reference vector is updated as ex-
pressed by eq. (1), the SA model can provide a new
soft-max adaptation rule. Figure 1 shows an architec-
ture for clustering processing using the SA model.
The distortion error between the input vector and
each stored reference vector is evaluated in parallel
with stochastic fluctuation. The winner-take-all cir-
cuit deterministically extracts the winner, and only
the winning reference vector is updated as in the K-
means algorithm. However, unlike the K-means al-
gorithm, the adjusted vector is not always the most
similar reference vector, and sometimes other simi-
lar vectors are adjusted. The total adjusting tendency
in the SA algorithm seems similar to the NG or ME
algorithm because the probability of reference vector
selection is determined by the neighborhood ranking
and the distances between each reference vector and
a given data vector.

(a) t=0 (b) tmax = 5000 (c) tmax = 50000

Figure 2: Test problem and clustering results by SA and ME
algorithms. Data samples uniformly distribute in square regions,
and points represent reference vectors. Both algorithms use the
same initial state. The number of total updating steps is denoted
by tmax.
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Figure 3: Clustering performance of SA algorithm compared
with other clustering approaches.

3 Simulation results

In order to test the performance of the SA algo-
rithm and to compare it with the other soft-max ap-
proaches, we performed several simulations.

One of the simulation results are shown in Figs. 2
and 3. For the detail of the simulation, see [4].

The data clusters are of square shape within a two-
dimensional input space as shown in Fig. 2.

Figure 2 shows an example of clustering by the SA
algorithm compared with that by the ME algorithm.
The result of the SA algorithm demonstrates nearly
perfect clustering for tmax � 50000. In contrast, the
clustering result by the ME algorithm is not so good
although the parameters used were optimized.

The simulation results of clustering performance
are shown in Fig. 3. The performance of the SA
algorithm is nearly equal to that of the NG algo-
rithm, which is the most efficient clustering method



in this test problem. The number of adaptation steps
to reach the steady state and the distortion error at the
steady state in the SA algorithm are nearly the same
as those in the NG algorithm. Here, all the clustering
algorithms including the SA algorithm use an anneal-
ing procedure to escape local minima; the parameters
that determine the updating step size and the region
of proximity were gradually reduced during adapta-
tion.

Consequently, comparing with the other soft-max
algorithms, the SA algorithm has nearly the best
clustering performance. Moreover, because only one
reference vector is adjusted per adaptation step, the
computational power required by the SA algorithm
is much less than that required by the other soft-max
algorithms. If the number of reference vectors is N,
the total updating processes of all reference vectors
in the SA algorithm are 1�N times as many as those
in the other algorithms. Thus, the SA algorithm is
the most efficient clustering method.

4 Nanostructure

The key for implementing the SA model is adding
random fluctuation as expressed by eq. (2). We have
already proposed single-electron circuits and nanos-
tructures evaluating Hamming distance for the SA
model [5, 6, 8-10]. We have also proposed its CMOS
VLSI implementation. [7]

Figure 4(a) and (b) show a nanostructure and the
corresponding single-electron circuit, respectively,
which are the most sophisticated version of our cir-
cuits and structures [11, 4]. The nanostructure con-
sists of plural (M) dot structures arranged on a MOS
transistor gate electrode. Each dot structure consists
of 1-D dot arrays Ah (D1� � � � �Dn�Dc�Dn� � �� �D1) and
Av (Dv1�Dv2�Dv3), where n means the number of dots
at a side of Ah. (From Monte Carlo single-electron
circuit simulations, n should be more than 3). The
dot diameter assumed is around 1 nm. The capac-
itance Co corresponds to the gate capacitance of an
ultrasmall MOS transistor. It is assumed that an elec-
tron eM can be introduced in array Ah. Electron eM,
which is initially located at Dc, can move along ar-
ray Ah through tunneling junctions C j, but it cannot
move to Av through the normal capacitor C2. Digi-
tal (High/Low) voltages Vdi and Vri (i � 1�2�� � � �M)
are applied at both edges of Ah, which correspond to
elements of data and reference vectors, respectively.

Each dot structure simply works as an exclusive-
NOR logic gate (bit comparator) with random fluc-
tuation as explained below.

If the two digital data bits (H or L) are matched,
electron eM stabilizes at center dot Dc, otherwise eM

moves to an off-center position. After stabilizing e M,
by changing voltages Vdi, Vri and back-gate voltage
Vbg, vertical dot array Av detects whether eM stays
at Dc or not; only if eM stays at Dc, Av is polarized
and an electron is induced at the gate electrode of Co.
The total number of induced electrons (Ne) is propor-
tional to the number of dot structures with matched
bits; thus the Hamming distance can be measured by
counting the induced electrons using the ultrasmall
MOS transistor. (If one of the input digital data is ap-
plied through an inverter, the number of unmatched
bits can be calculated).

The detail of operation stabilizing eM is as follows:
Because of the charging energy of eM itself, the total
energy as a function of the position of eM in array
Ah has two peaks at the midpoints of each side of the
array, and has minimal values at Dc and both of D1

as shown in Fig. 4(c). The energy barrier height for
eM at Dc is assumed larger than the thermal energy at
room temperature.

In L-L state, the energy at D1 rises up, thus eM is
most strongly stabilized at Dc. On the other hand, in
H-L(L-H) or H-H state, the energy barrier is lower
than that of L-L state, thus eM can more easily over-
come the barrier by using thermal noise. Figure 4(d)
shows the relation between operation temperature
and time (tM) required until eM moves to D1, which
was obtained by Monte Carlo single-electron circuit
simulation. The moving process assisted by thermal
noise is purely stochastic, thus t M scatters in a wide
range. However, because the energy barrier height
in H-L(L-H) states is lower than that in H-H state as
shown in Fig. 4(c), there exists a certain time span
t0 within which eM in H-L(L-H) states moves to D1

while eM in H-H state stays at Dc. At room temper-
ature (300K), t0 is several microseconds in this case
although t0 depends on the tunneling resistance.

If the detection process starts after t0, nearly per-
fect exclusive-NOR (bit comparison) operation is
achieved. On the other hand, if the detection tim-
ing is shifted from t0, arbitrary amount of fluctuation
can be added in the bit comparison results, as shown
in Fig. 5 [11]. Thus, we utilize quantum mechanical
tunneling processes assisted by thermal noise in this
structure, which is similar to a phenomenon known
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Figure 4: Nanostructure evaluating Hamming distance. (a) Schematic of nanostructure, where dot arrays are extremely enlarged
compared with a MOSFET to emphasize the dot structures. (b) Single-electron circuit. (c) Potential profile in dot array A h. (d) eM
moving time for bit comparator operation.

as stochastic resonance.
Although digital data are treated in the above ex-

planation, analog data can be treated in the same cir-
cuit by using pulse-width modulation (PWM) sig-
nals, which have a digital amplitude and an analog
pulse width. Therefore, instead of the Hamming dis-
tance, the Manhattan distance can be evaluated by
using this nanostructure. Because random fluctua-
tion is naturally added in our nanostructure, it can
implement the calculation expressed by eq. (2).

The proposed nanostructure has not yet been fabri-
cated using the present VLSI technology, but the ba-
sic technology related to nanocrystalline floating-dot
MOSFET devices, which are closely related to our
structure, is now being developed [12-14]. Further-
more, well-controlled self-assembly processes using
molecular manipulation technology, especially using
DNA [15], would be utilized to fabricate our nanos-
tructure.

5 Conclusions

The stochastic association algorithm offers a simple
and powerful soft-max adaptation rule for cluster-
ing. Although our new method is the same as the
simple on-line K-means clustering except for adding
random fluctuation in the distortion error evaluation
process, it has the most efficient adaptation perfor-
mance; the computational effort is much smaller
compared with the conventional algorithms.

By employing the nanostructure proposed in this
paper, very high performance clustering hardware
could be constructed.
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Figure 5: Association probability distribution as a function of
Hamming distance for various detection timing td . The distribu-
tion is broadened by fluctuation due to thermal noise when t d is
different from t0.


